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Abstract—The dimerization of butadiene has been explored by using DFT methods at the B3LYP level with the 6-311+G** basis
set. A concerted bispericyclic TS for the endo pathway and a concerted pericyclic TS for the exo pathway are the lowest passes
for the dimerization and occur at almost the same energy thus accounting for the lack of stereochemical preferences in the
dimerization. Diradical paths involving two unswitched transoid butadiene moieties are competing and account for the formation
of minor amounts of trans-1,2-divinyl cyclobutane and 1,5-cycloctadiene. © 2002 Elsevier Science Ltd. All rights reserved.

The origin of the endo stereoselection in Diels–Alder
(DA) cycloadditions is still a matter of warm dispute
and controversy and attracts continuing interest.1 The
monumental work of Alder and Stein led to establish-
ment of the Alder’s endo rule or principle of maximum
accumulation of unsaturations.2 In a seminal contribu-
tion in 19653 Woodward and Hoffmann (WH) traced
to the Secondary Orbital Interactions (SOIs) the under-
lying factors of the Alder’s rule and since then SOIs
have become a fascinating and basic tenet for a few
generations of organic chemists.4 Despite their appeal
the SOI escaped firm theoretical validations and con-
clusive evidence for their existence is still lacking.1a,b

We have recently reported5 that the maximum accumu-
lation of unsaturated centers in the DA 4+2 endo
dimerization of cyclopentadiene allows for the full
exploitation of the ‘next–nearest’ Salem/Houk (SH)
SOI6 along the 2+4 perimeter; this results from the
minimal structural deformations of the addends needed
to take advantage of the SH SOI. The reaction takes
then place through the bispericyclic and symmetrical
transition structure (TS) 1, where the 4+2 and 2+4
cycloaddition paths are fully merged, while the exo TS
2 lies 2.9 kcal/mol higher in energy. On going to the
case of the parent acyclic butadiene, the role of a
bispericyclic TS, if any, should be however less impor-
tant since energy has to be supplied to distort the
transoid butadiene into the reactive cisoid conformation
of the diene moiety and also to switch the transoid (T)
dienophile moiety into the cisoid (C) conformation
needed for the bispericyclic array. Among the four
possible TSs of the butadiene DA dimerization 3–6 one
has then to expect a rather intricate and delicate bal-
ance of competing effects, deformation energies favor-
ing TN and TX, SH SOIs favoring CN and WH SOI
(dotted line in 5) promoting TN and perhaps steric
effects favoring the exo over the endo TSs.

At variance with the strict endo selection of cyclopenta-
diene, the dimerization of butadiene is experimentally
known to take place without any stereochemical prefer-
ence. The elegant studies by Stephenson and Klärner
on the dimerization of cis,cis-1,4-dideutero-1,3-
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butadiene7 are consistent with two main concerted endo
and exo pathways of similar importance, along with
minor diradical pathways leading to trans-1,2-divinyl-
cyclobutane and 1,5-cyclooctadiene. Thermochemical
estimates and previous theoretical calculations8 show
that concerted and diradical pathways are energetically
quite close and differences are within 2–3 kcal/mol.

We have located the relevant points on the potential
energy surface of the dimerization of butadiene at the
B3LYP/6-31G* level,9 which gives satisfactory
geometries and reliable energies for pericyclic reactions
and diradical formations,10 but the higher level B3LYP/
6-311+G** calculations were needed to give a more
balanced description of the cycloaddition and diradical
TSs of butadiene dimerization. The electronic energies
�Ee of the TSs and the adducts relative to the reactants
are given in Table 1 along with the enthalpies, entropies
and forming bond lengths. In Fig. 1 the B3LYP
enthalpies are given along with the formulas. The low-
est passes for the DA dimerization are the endo TS CN
and the exo TS TX, which is 0.2 kcal/mol higher in
energy. At a slightly higher energy lies TS CX (0.5
kcal/mol), while the WH TS TN is the highest pass (1.2
kcal/mol). The anti trans, trans diradical forming TS
tt-out 7 and TS tt-in 8 lie essentially at the same energy
of TS CN while the corresponding anti diradicals 9 and
10 lie 7 kcal/mol below TS CN. In the case of the anti
ct-out and cc-out diradicals, the forming TSs 11 and 12
are lifted by 1.6 and 3.5 kcal/mol, respectively, with
respect to the tt case while the corresponding diradicals
13 and 14 are less lifted, by 0.8 and 1.8 kcal/mol,
respectively. Also shown is the Cope TS 15 at 24.3
kcal/mol above the addends and the cycloadduct 16,
which lies 28.8 kcal/mol below.

The data in Fig. 1 fit the experimental results rather
satisfactorily, showing that two passes at comparable

energy are available to the butadiene DA dimerization,
namely the SH SOI assisted endo TS CN and the least
sterically hindered exo TS TX, which account for the
lack of stereoselectivity in the butadiene cycloaddi-
tion.11 Comparable in energy, but presumably still
underestimated by the calculations at this theoretical
level, are two passes for diradical formation, TS tt-out
7 and TS tt-in 8, which provide an entry into the flat
tetramethylene manyfold (the twixtyl or caldera),12

where fast internal rotations interrelate the various
conformations and slower collapses to trans- and cis-
1,2-divinyl cyclobutane take place.13 Under the reaction

Figure 1. Transition structures, diradical intermediates and
DA cycloadducts in the butadiene dimerization. Numbers
near the levels are enthalpies in kcal/mol relative to the
reactants and numbers near the forming bonds are bond
distances in A� .

Table 1. B3LYP/6-311+G** electronic energies �Ee relative to the reactants (kcal/mol), enthalpies (kcal/mol) and entropies
(e.u.),a forming C···C bond lengths (A� ) of the TSs, diradical species and cycloadduct in the dimerization of butadieneb

�Hd �S C···C�Ee
c

28.7 (0.0) 1.94, 2.99, 2.9927.1 (24.7) −29.6CN 3e

CX 4e −29.727.6 (24.8) 1.97, 2.7029.2 (0.5)
28.5 (25.5) 2.08, 2.46TN 5e −29.629.9 (1.2)

−29.1 2.02, 2.5428.9 (0.2)27.4 (24.5)TX 6e

28.5 (−0.2)28.1 (24.9)TS tt-out 7f −21.0 1.91
28.2 (25.0) 28.6 (−0.1) −23.6 1.91TS tt-in 8f

−21.622.0 (−6.7) 1.5620.9 (16.3)tt-out 9f

21.6 (−7.1)tt-in 10f −22.020.6 (16.1) 1.56
TS ct-out 11f 29.5 (26.5) 30.1 (1.4) −23.5 1.92
TS cc-out 12f 31.3 (28.4) 32.0 (3.3) −23.3 1.94

1.56−21.722.8 (−5.9)ct- out 13 21.6 (17.3)
cc-out 14f 23.8 (−6.9)22.4 (18.3) −21.1 1.57

22.0 (17.5) 24.3 (−4.4)Cope 15e −37.2 2.48, 2.48
−33.6−24.2 (−52.9)Adduct 16 −28.8 (−35.2)

a Thermodynamic values at 298.15 K from unscaled vibrational frequencies in the harmonic approximation.
b s-trans-Butadiene, −156.040798 hartrees, correction to enthalpy �H=56.68, S=66.12; s-cis-butadiene: �Ee=3.50.
c B3LYP/6-31G* electronic energies in parentheses.
d Enthalpies relative to TS CN 3 in parentheses.
e UB and RB calculations gave identical results.
f Fully optimized UB singlet diradicals.
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conditions the latter is converted into 1,5-cyclooctadi-
ene through an easy Cope rearrangement.14

TS CN 3 is a first order saddle point of the bispericyclic
variety, similar to the endo TS 1 of the cyclopentadiene
dimerization,5 and is depicted in Fig. 2. The 1,1� bond,
at the ends of the butadiene moieties, is rather
advanced (1.94 A� ) while the symmetrical 4,2� and 2,4�
bonds lag well behind and are still rather long (2.99 A� ),
giving to the structure a highly asynchronous shape and
an uncanny diradicaloid resemblance. The TS CN is
chiral with C2 symmetry and IRC calculations show
that the reaction coordinate (RC) steps from TS CN
maintaining the C2 symmetry with only minor changes
in the long C···C bonds. On the product side the RC
steps at the beginning toward the Cope TS but on the
way the distortive antisymmetric C···C/C···C vibration
(which is the imaginary frequency of the Cope TS 15)
becomes negative and breaks the C2 symmetry causing
a bifurcation15 in two different paths (Fig. 2b), which
are equivalent through a binary rotation axis. At vari-
ance with the cyclopentadiene case, the inflection point
occurs almost immediately after the TS is passed, at a
1,1� bond distance of 1.90 A� , presumably because of the
higher flexibility of the acyclic butadiene moieties in the
bispericyclic array. The bispericyclic shape and high
asynchronicity of TS CN can be accounted for with the
quite simple Frontier Orbital (FO) rationalization
shown in Fig. 2c. The highly favorable SH SOIs lead to
a merging of the 4+2 and 2+4 allowed paths, whose
cooperation strengthens the 1,1� bond.

The other available cycloaddition pass, TS TX 6, corre-
sponds to the least hindered approach of the addends
and looks like a normal asynchronous DA cycloaddi-
tion. The tt diradical forming TSs 8 and 9 have the
expected geometries as well as the ct and cc diradical
forming TSs, which are lifted owing to the cost of the
conformational switch of the addends.

Although the computational results do parallel the
experimental findings, the unexpected location of the
remaining two cycloaddition TSs CX and TN raise
some perplexities. Why should the unassisted TS CX be
so low, in spite of the cost of the conformational
switch? Alternatively, why is TS TN so high, in view of
the possible stabilization through the classical WH
SOIs? Do the WH SOIs really exist?

A careful examination of the geometrical features of the
cycloaddition TSs discloses the likely origin of these
perplexing locations. At variance with the TSs of the
cyclopentadiene dimerization, the forming bonds
between the butadiene moieties in the dimerization TSs
are significantly twisted away from the coplanar
arrangement. In TS CN the butadiene moieties are
twisted inside by 20.3° and in TS CX and TX are
twisted outside by 20.9 and 13.9°, respectively, while in
TS TN no sizeable twisting is observed (Fig. 3). The
inside twisting of CN can be ascribed to the necessary
adjustment to take advantage of the SH SOI, while the
outside twistings of the exo TSs CX and TX suggest the
relief of steric strain around the 1,1� shorter forming

Figure 2. Geometric features and forming bond lengths in A� of the endo dimerization TS CN (a) and a 3D picture of the RC of
the dimerization path (b). The dotted path refers to the crest toward Cope TS. In the DA HO-LU interactions (c) the bold dashes
refer to the primary interaction, the dashed and dotted lines to the SH and the WH SOIs, respectively.
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Figure 3. Twisting effects in the cycloaddition TSs. Arrows
indicate the twisting of the dienophile moieties and the num-
bers near the arrows give the dihedral angles 1/1�/2�/4. Num-
bers near the TS labels are the stabilization energies in
kcal/mol associated with the twisting motions.

and are presumably underestimated at the theoretical
level used here.

The merging and the bifurcation of the cycloaddition
paths should depend on the substitution patterns of
butadienes and the study of the substituent effects will
be pursued in due course.
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